Temporally compartmentalized expression of ephrin-B2 during renal glomerular development.
نویسندگان
چکیده
Glomerular development proceeds through the spatially ordered and sequential recruitment, proliferation, assembly, and differentiation of endothelial, mesangial, and epithelial progenitors. The molecular determinants of cell-cell recognition and targeting in this process have yet to be defined. The Eph/ephrin family of membrane receptors and counter-receptors are critical participants of developmental vascular assembly in extrarenal sites. Renal expression patterns of ephrin-B2 and EphB4 were investigated using mice expressing beta-galactosidase under control of ephrin-B2 or EphB4 promoters. The earliest glomerular expression of ephrin-B2 was identified in a subset of differentiating comma-stage glomerular epithelial cells (podocyte progenitors) adjacent to the vascular cleft where endothelial progenitors are subsequently recruited. Epithelial ephrin-B2 expression was accompanied by expression in endothelial and mesangial cells as capillary assembly progressed. At or near completion of glomerular maturation, epithelial ephrin-B2 expression was extinguished, with persistence in glomerular endothelial cells. Throughout development, one of several ephrin-B2 receptors, EphB4, was persistently and exclusively expressed in endothelial cells of venous structures. The findings show sequential ephrin-B2 expression across glomerular lineages, first in a distinct subset of podocyte progenitors and subsequently in endothelial cells of the developing glomerulus. Given targeting functions for Eph/ephrin family proteins, the findings suggest that ephrin-B2 expression marks podocyte progenitors at the site of vascular cleft formation, where expression may establish an "address" to which endothelial and mesangial progenitors are recruited. Thus, the present results suggest that ephrin-B2 and EphB interactions play an important role in glomerular microvascular assembly.
منابع مشابه
Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone.
Glomerular injury plays a pivotal role in the development of diabetic nephropathy. To elucidate molecular mechanisms underlying diabetic glomerulopathy, we compared glomerular gene expression profiles of db/db mice with those of db/m control mice at a normoalbuminuric stage characterized by hyperglycemia and at an early stage of diabetic nephropathy with elevated albuminuria, using cDNA microar...
متن کاملGossler , Helmut Drexler and Florian P . Limbourg
Growth of functional arteries is essential for the restoration of blood flow to ischemic organs. Notch signaling regulates arterial differentiation upstream of ephrin-B2 during embryonic development, but its role during postnatal arteriogenesis is unknown. Here, we identify the Notch ligand Delta-like 1 (Dll1) as an essential regulator of postnatal arteriogenesis. Dll1 expression was specifical...
متن کاملNotch ligand Delta-like 1 is essential for postnatal arteriogenesis.
Growth of functional arteries is essential for the restoration of blood flow to ischemic organs. Notch signaling regulates arterial differentiation upstream of ephrin-B2 during embryonic development, but its role during postnatal arteriogenesis is unknown. Here, we identify the Notch ligand Delta-like 1 (Dll1) as an essential regulator of postnatal arteriogenesis. Dll1 expression was specifical...
متن کاملAFLUID March 47/3
Wang, Danzhao, Hideaki Yoshida, Qing Song, Lee Chao, and Julie Chao. Enhanced renal function in bradykinin B2 receptor transgenic mice. Am. J. Physiol. Renal Physiol. 278: F484–F491, 2000.—The tissue kallikrein-kinin system has been recognized as a paracrine and/or autocrine hormonal system that regulates arterial pressure, renal hemodynamics, and electrolyte excretion. We have created a transg...
متن کاملSpatial expression of the kallikrein-kinin system during nephrogenesis.
During nephrogenesis, new nephrons are induced in the periphery of the kidney, while maturing nephrons occupy a deeper position in the renal cortex. This centrifugal pattern of maturation is characterized by nephron patterning, establishment of proximal-distal segment identity, tubular and glomerular growth and differentiation, and acquisition of specialized functions. All of these processes ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 12 12 شماره
صفحات -
تاریخ انتشار 2001